
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Jens Kehne, Marius Hillenbrand
Operating Systems Group, Department of Computer Science

www.kit.edu

Microkernel Construction
I.2 – Threads, System Calls, Thread Switching

Lecture Summer Term 2017

Wednesday 15:45-17:15 R131, 50.34 (INFO)

Operating Systems Group

Department of Computer Science

2 03.05.2017

Fundamental Abstractions

Thread

Address space

What is a thread?

How to implement it?

What conclusions can we draw from
our analysis with respect to µ-kernel
construction?

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

3 03.05.2017

Thread Properties

Register set
General purpose registers,
IP, and SP

Stack
Status

Flags, privilege, etc.

OS-specific state
Priority, time, etc.

Address space
Unique ID
Communication status

IP
SP

FLAGS

Internal
properties

External
properties

Regs

Memory

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

4 03.05.2017

Construction Conclusion

Thread state must be saved/restored on thread switch

We need a Thread Control Block (TCB) per thread

TCBs must be kernel objects

TCBs implement threads

We often need to find

The TCB of any thread using its global ID

The TCB of the currently executing thread
(per processor)

At least partially. We have found
some good reasons to
implement parts of the TCB in
user memory (IPC).

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

5 03.05.2017

Thread Switch A B

Processor

tcb B

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

IP
SP

FLAGS

user mode A

Memory

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

6 03.05.2017

Thread Switch A B

Processor

tcb B

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

IP
SP

FLAGS

user mode A

kernel

Memory

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

7 03.05.2017

Thread Switch A B

Processor

tcb B

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

IP
SP

FLAGS

user mode A

kernel

Memory

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

8 03.05.2017

Thread Switch A B

Processor

tcb B

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

IP
SP

FLAGS

user mode A

kernel

Memory

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

9 03.05.2017

Thread Switch A B

Processor

tcb B

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

IP
SP

FLAGS

user mode A

kernel

user mode B
Memory

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

10 03.05.2017

Thread Switch A B

Thread A is running in user mode

Thread A experiences its end of time slice or is
preempted by a (device) interrupt

We enter kernel mode

The microkernel saves the status of
thread A on AȾs T C B

The microkernel loads the status of
thread B from BȾs T C B

We leave kernel mode

Thread B is running in user mode

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

11 03.05.2017

Thread Switch A kernel B

Processor

tcb A

IP
SP

FLAGS IP
SP

FLAGS

user mode A

Memory

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

12 03.05.2017

Thread Switch A kernel B

How to save user-
mode state when
switching to kernel?

How do we know
which kernel thread
to activate?

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Processor

tcb A

IP
SP

FLAGS IP
SP

FLAGS

user mode A

kernel

IP
SP

FLAGS

?

Memory

Operating Systems Group

Department of Computer Science

13 03.05.2017

Thread Switch A kernel B

Processor

tcb A

IP
SP

FLAGS IP
SP

FLAGS

user mode A

kernel

IP
SP

FLAGS

Kernel
code

Kernel
stack

Memory

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

14 03.05.2017

Thread Switch A kernel B

How do we find the
TCB for the current
thread A?

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Processor

tcb A

IP
SP

FLAGS IP
SP

FLAGS

user mode A

kernel

IP
SP

FLAGS

Kernel
code

Kernel
stack

Memory

Operating Systems Group

Department of Computer Science

15 03.05.2017

Thread Switch A kernel B

Processor

tcb A

IP
SP

FLAGS IP
SP

FLAGS

user mode A

kernel

Kernel
code

Kernel
stack

Memory

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

16 03.05.2017

Thread Switch A kernel B

Once we found the
kernel stack, we
know the TCB

One TLB entry
covers kernel stack
and TCB

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Processor

tcb A

IP
SP

FLAGS IP
SP

FLAGS

user mode A

kernel

Kernel
code

Kernel
stack

Memory

Operating Systems Group

Department of Computer Science

17 03.05.2017

Thread Switch A kernel B

Processor

tcb B

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

IP
SP

FLAGS

user mode A

kernel

Kernel
code

Kernel
stack

Kernel
stack

Memory

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

18 03.05.2017

Thread Switch A kernel B

How do we find TCB and
kernel stack of thread B?

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Processor

tcb A

IP
SP

FLAGS IP
SP

FLAGS

user mode A

kernel

Kernel
code

Kernel
stack

Memory

tcb B

IP
SP

FLAGS

Kernel
stack

Operating Systems Group

Department of Computer Science

19 03.05.2017

Thread Switch with single kernel stack

Processor

tcb A

IP
SP

FLAGS IP
SP

FLAGS

user mode A

kernel

Kernel
code

Kernel
stack

Memory

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Continu-
ation

Operating Systems Group

Department of Computer Science

20 03.05.2017

Construction Conclusion

From the view of the designer there are two alternatives:

Single Kernel Stack

 Only one stack is used
in kernel mode all the
time

 seL4, OKL4

Per-Thread Kernel Stack

 Each thread has its own
stack in kernel mode

 Pistachio, Fiasco.OC

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

21 03.05.2017

Single Kernel Stack

Per processor, event model

Either continuations
− Complex to program

Or stateless kernel
− No kernel threads, kernel not interruptible, difficult to

program

− Structurally inefficient system calls

+ Kernel can be exchanged on-the-fly

E.g. the fluke kernel from Utah

Low cache and TLB footprint
The same stack is always used!

Stack can be larger
Easier to use recursion in the kernel!

Easier to prove

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

22 03.05.2017

Multiple Kernel Stacks

Per thread, activity model

Kernel can always use threads, no special methods
required for keeping state while interrupted/blocked

No conceptual difference between kernel mode and user
mode

Larger cache and TLB footprint

Limited kernel stack size

Conclusion:
We have to look for a
solution that minimizes
the kernel stack size

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Conclusion:
We have to avoid
recursion in the kernel
(Mapping)

Operating Systems Group

Department of Computer Science

23 03.05.2017

KERNEL ENTRY AND EXIT ON

IA-32

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

24 03.05.2017

Kernel Entry (IA-32)

user stack

 tcb A

esp0

esp

eip

eflags

eax ebx

ecx edx

 ebp esi edi

kernel code

 Trap/fault occurs (int n / exception / interrupt)

user mode

points to the currently running
th re a d ’s k e rn e l sta c k

CPU

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

25 03.05.2017

Kernel Entry (IA-32)

user stack

 tcb A

esp0

ss esp esp

eip

eflags

eax ebx

ecx edx

 ebp esi edi

kernel code

 Trap/fault occurs (int n / exception / interrupt)

 Push user SS:ESP onto kernel stack, load kernel SS:ESP

kernel mode

CPU

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

26 03.05.2017

Kernel Entry (IA-32)

user stack

 tcb A

esp0

ss esp flg esp

eip

eflags

eax ebx

ecx edx

 ebp esi edi

kernel code

 Trap/fault occurs (int n / exception / interrupt)

 Push user SS:ESP onto kernel stack, load kernel SS:ESP

 Push user EFLAGS, reset flags (I := 0, CPL := 0)

kernel mode

CPU

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

27 03.05.2017

Kernel Entry (IA-32)

user stack

 tcb A

esp0

ss esp flg cs eip esp

eip

eflags

eax ebx

ecx edx

 ebp esi edi

kernel code

 Trap/fault occurs (int n / exception / interrupt)

 Push user SS:ESP onto kernel stack, load kernel SS:ESP

 Push user EFLAGS, reset flags (I := 0, CPL := 0)

 Push user CS:EIP, load kernel entry CS:EIP

kernel mode

CPU

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

28 03.05.2017

Kernel Entry (IA-32)

user stack

 tcb A

esp0

ss esp flg cs eip esp

eip

eflags

eax ebx

ecx edx

 ebp esi edi

kernel code

X

 Trap/fault occurs (int n / exception / interrupt)

 Push user SS:ESP onto kernel stack, load kernel SS:ESP

 Push user EFLAGS, reset flags (I := 0, CPL := 0)

 Push user CS:EIP, load kernel entry CS:EIP

 Push X: error code (hw, at exception) or kernel-call type

kernel mode

CPU

hardware

programmed,

single

“i nstruc ti on”

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

29 03.05.2017

Kernel Entry (IA-32)

user stack

 tcb A

esp0

ss esp flg cs eip esp

eip

eflags

eax ebx

ecx edx

 ebp esi edi

kernel code

edi … eax X

 Trap/fault occurs (int n / exception / interrupt)

 Push user SS:ESP onto kernel stack, load kernel SS:ESP

 Push user EFLAGS, reset flags (I := 0, CPL := 0)

 Push user CS:EIP, load kernel entry CS:EIP

 Push X: error code (hw, at exception) or kernel-call type

 Push registers (optional)

kernel mode

CPU

hardware

programmed,

single

“i nstruc ti on”

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

30 03.05.2017

System Call (IA-32)

int $0x31
Error code, e.g., 3 means
page fault

Push all the register
content to the stack

Pop all registers

Interrupt return: single
instruction that restores
user SS:ESP and CS:EIP
from kernel stack

ESP := ESP + 4
Restore the old ESP,
discard error code $X

push $X
pusha

popa
addl $4, %esp
iret

User mode Kernel mode

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

31 03.05.2017

THREAD SWITCH ON IA-32

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

32 03.05.2017

Locating the TCB

Remember: We need to find

Any threadȾs TCB using its global ID

The currently executing threadȾs TCB

Kernel ESP

 tcb

esp0

esp

Next
lecture

Align TCBs: movl %esp, %ebp
 andl -sizeof_tcb, %ebp

 esp value | 0000 0000 1011 1011 1011 1011 1011 1011 | 0x00BB_BBBB |

 sizeof_tcb | 0000 0000 0000 0000 0001 0000 0000 0000 | 0x0000_1000 | 4096

 ~sizeof_tcb | 1111 1111 1111 1111 1110 1111 1111 1111 | 0xFFFF_EFFF | -4097

 -sizeof_tcb | 1111 1111 1111 1111 1111 0000 0000 0000 | 0xFFFF_F000 | -4096

 esp & -sizeof_tcb | 0000 0000 1011 1011 1011 0000 0000 0000 | 0x00BB_B000

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

33 03.05.2017

Switching Threads (IA-32, per-thread stack)

user stack

 tcb

esp0

eip

eflags

eax ebx

ecx edx

 ebp esi edi

 tcb

user stack

ss esp flg cs eip X edi … eax CPU

Kernel code

esp

 int $0x0

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

34 03.05.2017

Switching Threads (IA-32, per-thread stack)

int $0x0

user stack

 tcb

esp0

eip

eflags

eax ebx

ecx edx

 ebp esi edi

 tcb

user stack

ss flg cs eip X edi … eax CPU

ss esp flg cs eip

esp

esp

Kernel code

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

X

Operating Systems Group

Department of Computer Science

35 03.05.2017

Switching Threads (IA-32, per-thread stack)

int $0x0, push registers of blue thread

user stack

 tcb

esp0

eip

eflags

eax ebx

ecx edx

 ebp esi edi

 tcb

user stack

ss flg cs eip X edi … eax CPU

ss esp flg cs eip

esp

esp

Kernel code

X edi … eax

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

36 03.05.2017

Switching Threads (IA-32, per-thread stack)

int $0x0, push registers of blue thread

Switch kernel stacks (store and load ESP)

user stack

 tcb

esp0

eip

eflags

eax ebx

ecx edx

 ebp esi edi

 tcb

user stack

ss flg cs eip X edi … eax CPU

ss esp flg cs eip

esp

esp

Kernel code

X edi … eax

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

37 03.05.2017

Switching Threads (IA-32, per-thread stack)

int $0x0, push registers of blue thread

Switch kernel stacks (store and load ESP)

Set ESP0 to new kernel stack

user stack

 tcb

esp0

eip

eflags

eax ebx

ecx edx

 ebp esi edi

 tcb

user stack

ss flg cs eip X edi … eax CPU

ss esp flg cs eip

esp

esp

Kernel code

X edi … eax

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

38 03.05.2017

Switching Threads (IA-32, per-thread stack)

int $0x0, push registers of blue thread

Switch kernel stacks (store and load ESP)

Set ESP0 to new kernel stack

Pop red registers

user stack

 tcb

esp0

eip

eflags

eax ebx

ecx edx

 ebp esi edi

 tcb

user stack

ss flg cs eip CPU

ss esp flg cs eip

esp

esp

Kernel code

X edi … eax

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

39 03.05.2017

Switching Threads (IA-32, per-thread stack)

int $0x0, push registers of blue thread

Switch kernel stacks (store and load ESP)

Set ESP0 to new kernel stack

Pop red registers, return to red user thread (iret)

user stack

 tcb

esp0 eflags

eax ebx

ecx edx

 ebp esi edi

 tcb

user stack

CPU

ss esp flg cs eip esp

Kernel code

X edi … eax

eip

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

40 03.05.2017

Thread Switch (IA-32, per-thread stack)

pusha

movl %esp, %ebp

andl -sizeof_tcb, %ebp

/* edi == address of B’s T C B * /

movl %esp, OFF_ESP(%ebp)

movl OFF_ESP(%edi), %esp

addl sizeof_tcb, %edi

movl %edi, %esp0

popa

addl $4, %esp

iret

Switch current kernel
stack pointer

Switch ESP0
so that next
kernel entry
uses new
kernel stack

Thread A

Thread B
int $0x0

int $0x0

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

41 03.05.2017

Switching Threads (IA-32, single stack)

user stack

 Stack

esp0

eip

eflags

eax ebx

ecx edx

 ebp esi edi

user stack

CPU

Kernel code

esp

 int $0x0

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Cont. ss esp flg cs eip edi … eax X

Operating Systems Group

Department of Computer Science

42 03.05.2017

Switching Threads (IA-32 , single stack)

int $0x0

user stack

 Stack

esp0

eip

eflags

eax ebx

ecx edx

 ebp esi edi

user stack

CPU

X ss esp flg cs eip
esp

Kernel code

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Cont. ss esp flg cs eip edi … eax X

Operating Systems Group

Department of Computer Science

43 03.05.2017

Switching Threads (IA-32 , single stack)

int $0x0, push registers of blue thread

user stack

 Stack

esp0

eip

eflags

eax ebx

ecx edx

 ebp esi edi

user stack

CPU

ss esp flg cs eip
esp

Kernel code

X

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Cont. ss esp flg cs eip edi … eax X

edi … eax

Operating Systems Group

Department of Computer Science

44 03.05.2017

Switching Threads (IA-32 , single stack)

int $0x0, push registers of blue thread

Find blue continuation

user stack

 Stack

esp0

eip

eflags

eax ebx

ecx edx

 ebp esi edi

user stack

CPU

ss esp flg cs eip
esp

Kernel code

X

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Cont. ss esp flg cs eip edi … eax X

Cont.

edi … eax

Operating Systems Group

Department of Computer Science

45 03.05.2017

Switching Threads (IA-32 , single stack)

int $0x0, push registers of blue thread

Find blue continuation

Move registers of blue thread to continuation

user stack

 Stack

esp0

eip

eflags

eax ebx

ecx edx

 ebp esi edi

user stack

CPU

esp

Kernel code

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Cont. ss esp flg cs eip edi … eax X

Cont. ss esp flg cs eip edi … eax X

Operating Systems Group

Department of Computer Science

46 03.05.2017

Switching Threads (IA-32 , single stack)

int $0x0, push registers of blue thread

Move registers of blue thread to continuation

Restore red IP/SP/Flags from continuation

user stack

esp0

eip

eflags

eax ebx

ecx edx

 ebp esi edi

 Stack

user stack

ss flg cs eip

CPU

esp
esp

Kernel code

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Cont. ss esp flg cs eip edi … eax X

Cont. edi … eax X

Operating Systems Group

Department of Computer Science

47 03.05.2017

Switching Threads (IA-32 , single stack)

int $0x0, push registers of blue thread

Move registers of blue thread to continuation

Restore red IP/SP/Flags from continuation

Restore red registers

user stack

esp0

eip

eflags

eax ebx

ecx edx

 ebp esi edi

 Stack

user stack

ss flg cs eip

CPU

esp
esp

Kernel code

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Cont. ss esp flg cs eip edi … eax X

Operating Systems Group

Department of Computer Science

48 03.05.2017

Switching Threads (IA-32 , single stack)

int $0x0, push registers of blue thread

Move registers of blue thread to continuation

Restore red IP/SP/Flags from continuation

Restore red registers, return to red user thread (iret)

user stack

esp0 eflags

eax ebx

ecx edx

 ebp esi edi

 Stack

user stack

CPU

esp

Kernel code
eip

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Cont. ss esp flg cs eip edi … eax X

Operating Systems Group

Department of Computer Science

49 03.05.2017

Kernel preemption with single stack

Where to save kernel state (stack + regs)?

Kernel stack? Stack size unbounded with nested interrupts

Continuation? Might as well have per-thread stacks

User-mode stack? What could possibly go wrong…?

esp0

eip

eflags

eax ebx

ecx edx

 ebp esi edi

 Stack

user stack

ss flg cs eip X edi … eax

CPU

esp
esp

Kernel code

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Kernel data

Operating Systems Group

Department of Computer Science

50 03.05.2017

What about other registers?

So far, we have only considered general purpose registers

What about FPU, SSE?

Extremely expensive

IA-3 2 Ƚs full SSE2 state is 5 1 2 Bytes

IA-6 4 Ƚs floating point state is ~ 1 . 5 KiB

Saving/restoring must be extremely efficient

Need a place to store FP state

WAY too large for TCB/Kernel stack

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

51 03.05.2017

Hardware to the rescue

x86 has HW support for saving/restoring FP state

xsave addr Store FP state to addr

xrstor addr Restore FP state from addr

Addr is called the Xsave area

EDX:EAX contain contain info what to save (bitmap)

Bitmap stored in xsave area

xsave area can be anywhere

Pointer kept in TCB

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Reserved
x

8

7

S

S

E

A

V

X

MPX
AVX-

512

P

T

P

K

R

Operating Systems Group

Department of Computer Science

52 03.05.2017

Xsave optimizations

xsave/xrstor provide highly efficient save/restore

But: Still a lot of data to copy

Init optimization:

If FU is in initial state (=unused), do not save

Modified optimization:

If register was not modified since last xrstor, do not save

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

53 03.05.2017

Summary

TCBs

Implement threads

Must store thread state while preempted

Kernel stacks

Either per thread (large TLB footprint, no recursion)

Or per core (need continuations, no kernel preemption)

Thread switch

Switch kernel stack

Or switch state on kernel stack

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

