AT

Karlsruhe Institute of Technology

Microkernel Construction
.2 — Threads, System Calls, Thread Switching

Lecture Summer Term 2017
Wednesday 15:45-17:15 R131, 50.34 (INFO)

Jens Kehne, Marius Hillenbrand
Operating Systems Group, Department of Computer Science

S . S .|

KIT — University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Fundamental Abstractions _\ﬂ(IT

|
a Thread
a Address space

® What is a thread?
® How to implement it?

B What conclusions can we draw from
our analysis with respect to -kernel
construction?

2 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

3

Thread Properties

Internal
properties

] -

External
properties

Memory

03.05.2017

AT

eeeeeeeeeeeeeeeeeeeeeeeeeeee

B Register set

® General purpose registers,
IP, and SP

@ Stack

® Status
® Flags, privilege, etc.

B OS-specific state
® Priority, time, etc.

W Address space
® Unique ID
® Communication status

Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

Construction Conclusion

AT

ttttttttttttttttttt f Technology

® Thread state must be saved/restored on thread switch
® We need a Thread Control Block (TCB) per thread

® TCBs must be kernel objects¥
B TCBs implement threads

B We often need to find

At least partially. We have found
some good reasons to
implement parts of the TCB in
user memory (> IPC).

® The TCB of any thread using its global ID
® The TCB of the currently executing thread

(per processor)

4 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

Thread Switch A 2> B ﬂ(".

Processor

user mode A

FLAGS
tcb B

5 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Thread Switch A > B

Processor

kernel

Memory

6 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017

AT

Karlsruhe Institute of Technology

FLAGS
tcb B

Operating Systems Group

Department of Computer Science

Thread Switch A 2> B ﬂ(".

Processor

kernel —

tcb B

7 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Thread Switch A > B

Processor

Karlsruhe In:

stitute of Technology

FLAGS

kernel

Memory

8 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017

FLAGS
tcb B

Operating Systems Group

Department of Computer Science

Thread Switch A > B

Processor

AT

Karlsruhe Institute of Technology

FLAGS

user mode B

9 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017

tcb B

Operating Systems Group

Department of Computer Science

Thread Switch A 2> B _\ﬂ(IT

® Thread A is running in user mode

® Thread A experiences its end of time slice or is
preempted by a (device) interrupt

B We enter kernel mode

® The microkernel saves the status of
thread AonA's TCB

® The microkernel loads the status of
thread B from B's T C B

® We |eave kernel mode
® Thread B Is running in user mode

10 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Thread Switch A 2 kernel 2 B ﬂ(".

Processor

user mode A

Memory

11 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Thread Switch A 2 kernel 2 B ﬂ(".

Processor

il
~

user mode A

® How to save user-
mode state when
switching to kernel?

kernel ® How do we know
which kernel thread
to activate?
Memory
12 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Thread Switch A 2 kernel 2 B ﬂ(".

Kernel

Processor code
Kernel
stack

user mode A
kernel

Memory

13 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Thread Switch A = kernel > B ﬂ(".
Kernel
Processor code

user mode A
kernel ® How do we find the
TCB for the current

thread A?

Memory

14 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Thread Switch A = kernel > B ﬂ(".
Kernel
Processor code

Kernel

user mode A
kernel

Memory

15 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Thread Switch A 2 kernel 2 B ﬂ(".

Processor

user mode A
kernel

Kernel
stack

® Once we found the

know the TCB

® One TLB entry
covers kernel stack
and TCB

Memory

16 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Thread Switch A 2 kernel 2 B ﬂ(".

Processor

Kernel

user mode A
kernel

17 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Thread Switch A 2 kernel 2 B ﬂ(".

Processor

Kernel

user mode A
kernel

® How do we find TCB and
kernel stack of thread B? o L

FLAGS
tcb B

18 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

19

Thread Switch with single kernel stack
Kernel
Processor

user mode A

03.05.2017

Kernel
stack

Karlsruhe In:

stitute of Technology

kernel

Memory

Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017

Continu-
ation

Operating Systems Group

Department of Computer Science

20

AT

Construction Conclusion =N el

From the view of the designer there are two alternatives:

03.05.2017

Only one stack is used Each thread has its own
in kernel mode all the stack in kernel mode
time
selL4, OKL4 Pistachio, Fiasco.OC
Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

21

Single Kernel Stack
Per processor, event model

B Either
Complex to program
® Or

AT

ttttttttttttttttttt f Technology

No kernel threads, kernel not interruptible, difficult to

program
Structurally inefficient system calls
+ Kernel can be exchanged on-the-fly
WE.g. the fluke kernel from Utah

® Low cache and TLB footprint
® The same stack is always used!

® Stack can be larger
W Easier to use recursion in the kernel!

® Easier to prove

03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

Multiple Kernel Stacks
Per thread, activity model

AT

ttttttttttttttttttt f Technology

W Kernel can always use threads, no special methods
required for keeping state while interrupted/blocked

® No conceptual difference between kernel mode and user

mode

We have to look for a
solution that minimizes
the kernel stack size

® Larger cache and TLB footprint
® Limited kernel stack size

22 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017

We have to avoid
recursion in the kernel
(= Mapping)

Operating Systems Group

Department of Computer Science

AT

Karlsruhe Institute of Technology

KERNEL ENTRY AND EXIT ON
|A-32

23 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Kernel Entry (I1A-32) ﬂ(".

CPU
esp
eip
eflags

eax ebx
ecx edx
ebp esi edi

user mode

= Trap/fault occurs (int n / exception / interrupt)

points to the currently running
thread'skernel stack

24 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Kernel Entry (I1A-32) ﬂ(".

CPU

I—

eip

eflags

eax ebx
ecx edx
ebp esi edi

= Trap/fault occurs (int n / exception / interrupt)
= Push user SS:ESP onto kernel stack, load kernel SS:ESP

25 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Kernel Entry (I1A-32) ﬂ(".

CPU
esp
eip
eflags

eax ebx
ecx edx
ebp esi edi

kernel mode

= Trap/fault occurs (int n / exception / interrupt)
= Push user SS:ESP onto kernel stack, load kernel SS:ESP
« Push user EFLAGS, reset flags (I := 0, CPL :=0)

26 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Kernel Entry (I1A-32) ﬂ(".

__

CPU
esp eip cs flgesp ss

eip
eflags

eax ebx
ecx edx
ebp esi edi

kernel mode

= Trap/fault occurs (int n / exception / interrupt)
« Push user SS:ESP onto kernel stack, load kernel SS:ESP
= Push user EFLAGS, reset flags (I := 0, CPL := 0)
= Push user CS:EIP, load kernel entry CS:EIP

27 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Kernel Entry (I1A-32) ﬂ(".

CPU

X eip cs flgesp ss

4 []
4

eflags

eax ebx

ecx edx
ebp esi edi

= Trap/fault occurs (int n / exception / interrupt) h
= Push user SS:ESP onto kernel stack, load kernel SS:ESP| hardware
= Push user EFLAGS, reset flags (I := 0, CPL := 0) > programmed,
= Push user CS:EIP, load kernel entry CS:EIP ff”gle o
= Push X: error code (hw, at exception) or kernel-call type J instruction
28 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Kernel Entry (I1A-32) ﬂ(".

CPU

edi.. eax [X|eip cs flgesp ss

4 []
4

eflags

eax ebx

ecx edx
ebp esi edi

= Trap/fault occurs (int n / exception / interrupt) h
= Push user SS:ESP onto kernel stack, load kernel SS:ESP| hardware
= Push user EFLAGS, reset flags (I := 0, CPL := 0) > programmed,
=« Push user CS:EIP, load kernel entry CS:EIP ff”gle ,
I nstruc ti on”

= Push X: error code (hw, at exception) or kernel-call type 7
= Push registers (optional)

29 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

System Call (I1A-32) ﬂ(".

int $0x31— =push$X?//////

pusha——"1

add|$4,9&£i:/

|ret\

User mode : Kernel mode

30 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

AT

Karlsruhe Institute of Technology

THREAD SWITCH ON |A-32

31 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Locating the TCB ﬂ(".

Remember: We need to find
B Anythreads T CBusingitsglobalID
¥ Thecurrentlyexecutingthreads TCB

\\\\\\////4
/-:Qi Align TCBs: movl %esp,

I

| andl -sizeof tc

esp value | 0000 0000 1011 1011 1011 1011 1011 1011 | OxOOBB_BBBB |

sizeof tcb | 0000 0000 0000 0000 0001 0000 0000 0000 | 0x0000_ 1000 | 4096

~sizeof tcb | 1111 1111 1111 1111 1110 1111 1111 1111 | OXFFFF EFFF | -4097

-sizeof tcb | 1111 1111 1111 1111 1111 0000 0000 0000 | OxFFFF _FO000 | -4096
esp & -sizeof tcb | 0000 0000 1011 1011 1011 0000 0000 0000 | Ox00BB BOOO

32 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Switching Threads (I1A-32, per-thread stack) ﬂ(".

CPU tcb edi.. eax

esp
eip

eflags :

eax ebx

ol n user stack

ebp esi edi = user stack

X eip cs flgesp ss

= int $0x0

33 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Switching Threads (I1A-32, per-thread stack) ﬂ(".

pdl.. eax X eip cs flgesp ss
esp

eip

eflags

X X
eax ep m user stack
ecx edx

ebp esi edi m user stack

®int $0x0

34 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Switching Threads (I1A-32, per-thread stack) ﬂ(".

CPU edi.. eax X eip cs flgesp ss
esp

edi.. eax X eip cs flgesp ss

eip \ & .- “l" :
eflags]

eax ebx
ecx edx
ebp esi edi

m user stack

m user stack

®int $0x0, push regqisters of blue thread

35 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Switching Threads (I1A-32, per-thread stack) ﬂ(".

CPU edi.. eax X eip cs flgesp ss
esp

eip

eflags

edi.. eax X eip cs flgesp ss

N =
n L4
L]

m user stack

eax ebx
ecx edx
ebp esi edi

m user stack

®int $0x0, push regqisters of blue thread
W Switch kernel stacks (store and load ESP)

36 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Switching Threads (I1A-32, per-thread stack) ﬂ(".

CPU edi.. eax X eip cs flgesp ss
esp edi.. eax X eip ¢ flgesp ss
eip R, :.: eunns® :'

eflags

eax ebx
ecx edx
ebp esi edi

m user stack

m user stack

®int $0x0, push regqisters of blue thread
W Switch kernel stacks (store and load ESP)
® Set ESPO to new kernel stack

37 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Switching Threads (I1A-32, per-thread stack) ﬂ(".

~
CPU)Igb/ eip cs flgesp ss
esp tcb X eip o flgesp ss
elp . oo
eflags

eax ebx
ecx edx
ebp esi edi

m user stack

m user stack

®int $0x0, push regqisters of blue thread

W Switch kernel stacks (store and load ESP)
W Set ESPO to new kernel stack

B Pop red registers

38 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Switching Threads (I1A-32, per-thread stack) ﬂ(".

CPU tch
esp tcb edi.. eax X eip cs flgesp ss

eip : .
eflags [Kemel code | P

eax ebx B
user stack
ecx edx A

ebp esi edi n user stack

Wint $0x0, push registers of blue thread

W Switch kernel stacks (store and load ESP)

W Set ESPO to new kernel stack

® Pop red registers, return to red user thread (iret)

39 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Thread Switch (1A-32,

pusha

Thread A movl

andl

movl
movl

addl

int $0x0

%esp, Y%ebp
-sizeof tcb, %ebp
[* edi == address of B's T C B */

per-thread stack) ﬂ(".

%esp, OFF_ESP(%ebp)
OFF_ESP(%edi), %esp

sizeof_tcb, %edi Thread B

movl %edi, %esp0 :
popa
addl $4, %esp
iret .
\ int $0x0
40 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Switching Threads (IA-32, single stack) ﬂ(".

Cont edi...eax X elp cs ﬂg esp ss

CPU

esp

eip
eflags

eax ebx n user stack
ecx edx
ebp esi edi -. user stack

= int $0x0

4 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Switching Threads (IA-32 , single stack) ﬂ(".

COnt edi...eax X elp cs ﬂg esp ss

eip cs flgesp ss

esp
eip _
eflags 5

X X
eax ep u user stack
ecx edx

ebp esi edi ‘ user stack

®int $0x0

42 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Switching Threads (IA-32 , single stack) ﬂ(".

COnt edi...eax X elp cs ﬂg esp ss
CPU : :

esp TRV o . cax X cip <= fgcsp = DA

eip :
eflags -~ [Remel code |

eax ebx
ecx edx
ebp esi edi

n user stack

‘ user stack

®int $0x0, push regqisters of blue thread

43 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Switching Threads (IA-32 , single stack) ﬂ(".

COnt edi...eax X elp cs ﬂg esp ss

Cong
S r=Tel (@Gl cedi ... eax X eip cs flg esp ss

n user stack

CPU

esp

eip
eflags

eax ebx
ecx edx
ebp esi edi

‘ user stack

®int $0x0, push regqisters of blue thread
B Find blue continuation

44 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Switching Threads (IA-32 , single stack) ﬂ(".

COnt edi...eax X elp cs ﬂg esp ss
@Ofe]g|M cdi ... eax X cip s figesp ss

esp

eip
eflags - ;
eax ebx m user stack
ecx edx

ebp esi edi n user stack

Wint $0x0, push registers of blue thread
B Find blue continuation
W Move registers of blue thread to continuation

45 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Switching Threads (IA-32 , single stack) ﬂ(".

Cont. B

CPU (@feYglM cdi .. cax X €eip ¢ figesp ss
esp - -
eip

eflags

eax ebx
ecx edx
ebp esi edi

m user stack
n user stack

®int $0x0, push regqisters of blue thread
W Move registers of blue thread to continuation
W Restore red IP/SP/Flags from continuation

46 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Switching Threads (IA-32 , single stack) ﬂ(".

(@fo]glf cdi ... cax X eip cs flgesp ss

CPU /

esp
eip
eflags

Stack eip s flg esp ss

““““

m user stack

eax ebx
ecx edx
ebp esi edi

n user stack

®int $0x0, push regqisters of blue thread

W Move registers of blue thread to continuation
W Restore red IP/SP/Flags from continuation

W Restore red registers

47 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Switching Threads (IA-32 , single stack) ﬂ(".

(@fo]glf cdi ... cax X eip cs flgesp ss

CPU

esp

eip ——itack -
eflags _

eax ebx RN
user stack
ecx edx I

ebp esi edi n user stack

®int $0x0, push regqisters of blue thread

W Move registers of blue thread to continuation

W Restore red IP/SP/Flags from continuation

W Restore red registers, return to red user thread (iret)

48 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Kernel preemption with single stack ﬂ(".

CPU

esp edl.. ea elp g esp

€ip : .
eﬂags _ & et
eax ebx .

ecx edx
ebp esi edi

® Where to save kernel state (stack + regs)?
® Kernel stack? Stack size unbounded with nested interrupts
® Continuation? Might as well have per-thread stacks
W User-mode stack? What could possibly go wrong...?

49 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

What about other registers? _\ﬂ("'

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

W So far, we have only considered general purpose registers
® What about FPU, SSE?

® Extremely expensive
B JA-3 25fullSSE?2 stateis5 1 2 Bytes
B JA-6 45floatingpointstateis~1.5 KiB

W Saving/restoring must be extremely efficient

® Need a place to store FP state
B WAY too large for TCB/Kernel stack

50 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

51

Hardware to the rescue

AT

ttttttttttttttttttt f Technology

® x86 has HW support for saving/restoring FP state

B xsave addr - Store FP state to addr
® xrstor addr > Restore FP state from addr

® Addr is called the Xsave area

® EDX:EAX contain contain info what to save (bitmap)

Reserved

P
P| AVX-
g T| 512 MPX

X <>
mww
®

® Bitmap stored in xsave area

® xsave area can be anywhere
B Pointer kept in TCB

03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

Xsave optimizations -\g(".

ttttttttttttttttttt f Technology

W xsave/xrstor provide highly efficient save/restore
® But: Still a lot of data to copy

® Init optimization:
® If FU is in initial state (=unused), do not save
® Modified optimization:
B If register was not modified since last xrstor, do not save

52 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Summary "ﬂ(".

ttttttttttttttttttt f Technology

® TCBs

® Implement threads

W Must store thread state while preempted
@ Kernel stacks

W Either per thread (large TLB footprint, no recursion)

® Or per core (need continuations, no kernel preemption)
® Thread switch

® Switch kernel stack

® Or switch state on kernel stack

53 03.05.2017 Jens Kehne, Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

